

Why building a WebGL 3D engine ?

Understanding 3D Basics via a soft engine

Wireframing

Rasterization

Flat Shading

Gouraud

Shading

Texture

mapping

Some 3D engine vocabulary

• A point in the 3D world = a vertex

• Multiple vertex = vertices

• Vector3 (x,y,z) is used for a 3D position or a direction

• Triangle = face

• A 3D object = a mesh

Web Standards Day Moscow#babylonjs

Using WebGL directly

A new context for the canvas:

Requires a compatible browser or device

canvas.getContext("webgl", { antialias: true}) ||

canvas.getContext("experimental-webgl", { antialias: true});

Web Standards Day Moscow#babylonjs

Using WebGL directly

Need to handle everything except the rendering:

 Shaders code (loading, compilation)

 Geometry creation, topology, transfer

 Shaders variables management

 Texture and resources management

 Render loop

WebGL is a low level API

Understanding geometries and shaders

Geometries

Vertices data (array of numbers)

Faces data (array of numbers)

WebGL Buffer

3D CARD

CPU SIDE GPU SIDE

Shaders

• Shaders are code for the GPU

• Language used is GLSL (Graphics Library Shader Language)

• Vertex shaders are about transforming geometry

• Pixel shaders are about computing pixel color

Vertex

Shader

Pixel

Shader

Anatomy of a vertex shader

Vertex data

External constants

Vertex shader code

Anatomy of a pixel shader

Pixel shader code

Performance considerations

Performance first
Going under the hood...

GARBAGE COLLECTOR

STATE CACHING SMART SHADERS

Removing memory

pressure to avoid FPS

drops due to GC

WebGL is a state

machine and

changing states is

expensive

Compiling cutting

edge shaders

Web Standards Day Moscow#babylonjs

Babylon.js ?

Free & open source project (Apache 2 license):
https://github.com/babylonjs/babylon.js

Written in TypeScript

Our philosophy?

Simple to use

High performance

Run everywhere

WebGL. simple. powerful.

https://github.com/babylonjs/babylon.js

Web Standards Day Moscow#babylonjs

Advanced features

Offline support
IndexedDB

Network optimizations
Incremental loading

Blender, 3DS Max & Unity

exporters

Design & render +

babylonjs.com/sandbox

Complete collisions and

physics engine

Web Standards Day Moscow#babylonjs

Advanced features

Smart shaders engine and

postprocesses

Complete Web Audio

engine

Advanced texture support

(Bump, DDS)

Touch, Gamepad, Oculus &

virtual joysticks

Web Standards Day Moscow#babylonjs

Handling touch devices
One event to rule them all!

Web Standards Day Moscow#babylonjs

Ok, let’s restart the engine from the beginning

Web Standards Day Moscow#babylonjs

BABYLON.JS Meshes
Main primitives

Sphere

Box
Plane

Cylinder
Torus

TorusKnotLines

Web Standards Day Moscow#babylonjs

BABYLON.JS Lights

HemisphericLight PointLight SpotLight DirectionalLight

Web Standards Day Moscow#babylonjs

Learning Babylon.js using the playground

• Get sample code

• Try and experiment

• Share with friends

• Learn by reading examples

The power of TypeScript!

PLAYING WITH INPUT

Touch

Camera based

on pointer

events

Device

Orientation

Camera based

on Device

Orientation API

Virtual

Joysticks

Using pointer

events, this

camera

generates two

joysticks on top

of the scene

Anaglyph

Use this camera

with Red/Green

glasses

Oculus

Control camera

orientation with

Oculus Rift

device

Gamepad

Use your

gamepad to

control your

camera

#babylonjs

Working with 3D artists

Web Standards Day Moscow#babylonjs

Creation Pipeline
From 3D tooling to WebGL using 0 line of code!

.babylon

o
fflin

e

co
n

v
e
rte

r

.FBX

.OBJ

.FBX

.OBJ

Physics simulation

scene.enablePhysics(new BABYLON.Vector3(0, -10, 0), new BABYLON.OimoJSPlugin());

2 physics engines via a plug-in system

• Based on Oimo.js by default & Canon.js available

• Absolutely uncorrelated from the native collision engine

• Choose the right impostor for your mesh:

– BABYLON.PhysicsEngine.PlaneImposter

– BABYLON.PhysicsEngine.BoxImposter

– BABYLON.PhysicsEngine.SphereImposter

– BABYLON.PhysicsEngine.CompoundImposter

• To generate a physic effect on a mesh:

– Let the gravity do its job

– Collisions between meshes with physics enabled

– Apply an impulse on the selected mesh at a given point

yourMesh.setPhysicsState(
BABYLON.PhysicsEngine.BoxImpostor,

{
mass: 0,
friction: 0.5,
restitution: 0.7

});

Set impostors

yourMesh.applyImpulse(direction, point); /* both BABYLON.Vector3 */

Web Standards Day Moscow#babylonjs

Babylon.js audio engine

Based on Web Audio

Supports ambient, omnidirectional or directional

3D sound using linear attenuation by default

Managed by code or by loading our .babylon format

Supported by our 3DS Max exporter (Blender &
Unity to come)

Simplicity again as a foundation

Web Standards Day Moscow#babylonjs

Debug layer

Draw calls

Time spent per feature

Number of objects

Number of active vertices

Are you GPU / CPU locked?

User marks + F12

Tool to help you reviewing performance issues

Web Standards Day Moscow#babylonjs

Other interesting features

LOD

Simd.js support

Web Workers for collisions

PBR rendering pipeline, Reflection Probes and much
more!

There’s a lot more!

Useful links

What we’re working on in MS Edge: status.modern.ie
• like WebRTC, Subclassing (ES6), Pointer Lock, etc.

Play with Babylon.js demos on www.babylonjs.com
• and try some tutorials via our playground: www.babylonjs.com/playground

• Documentation: http://doc.babylonjs.com

• Forum: http://www.html5gamedevs.com/forum/16-babylonjs/

Contact the MS Edge Developer Relations team on twitter:

@msedgedev

And Babylon.js developers: @deltakosh & @davrous

http://status.modern.ie/
http://www.babylonjs.com/
http://www.babylonjs.com/playground
http://doc.babylonjs.com/
http://www.html5gamedevs.com/forum/16-babylonjs/
https://twitter.com/iedevchat
https://twitter.com/deltakosh
https://twitter.com/davrous

www.babylonjs.com

#babylonjs

@deltakosh

@davrous

@rousseau_michel

