
V8
by @dimko1

What?
• Googles Open Source Engine

• Written on C++

• Compiles JS into Machine Code at execution
(JIT) without producing byte code

• Powers Chrome, Node, Opera

• Can run standalone, or can be embedded into
any C++ program

Made in Germany

So, why to know?

• Have no idea:)

Demo

Hidden Classes

• We don’t have types. (oh c’mon, not about
primitives)

• To optimise we need types…

• Types information is valuable for code
generation

• Remember: Compilation during Execution

Hidden Classes help to run
faster

• Creating hidden classes for objects during run-
time

• Objects with same hidden class can use same
optimised code

Summary

• Initialise all members in construction function

• Initialise members in same order

Tagging

• V8 represent JavaScript objects with 32 bits
values

• Object has flag 1

• Integer has flag 0 and called SMI

• If bigger - turning it into double and create new
object

Summary

• Prefer numeric values that can be represented
as 31-bit integer

Arrays

• We have arrays, huge array and sparse arrays

• Two ways of representing arrays:

• Fast Elements

• Dictionary Elements

Summary

• Create arrays from 0 index :)

• Don’t pre-allocate large Arrays

• Don’t delete element from array

• Don't load uninitialized or deleted elements

Summary 2

• User Array Literal: var a = [77, 88, 0.5, true]

• Don’t store non numeric values in numeric arrays

Compilers

• “Full” compiler can generate good code for any
JavaScript

• Optimizing compiler produces great code for
most JavaScript

Full Compiler

• Generate code quickly

• Does do no type analysis

• Using Inline Caching. Gather type information in
runtime

How Inline Cache Works

• Type dependant code for operations

• Validate type assumptions first

• Change at runtime as more types discovered

Monomorphic better than
Polymorphic

Optimizing Compiler

• Comes later and re-compiles “hot” functions

• Types taken form ICs

• Monomorphic can be inlined

• Inlining enables other optimizations

Deoptimization

• Optimization are speculative

• Throws away optimized code

• Resumes execution at the right place

• Reoptimization might be triggered again later

Summary

• Avoid changes in the hidden classes after
functions were optimised

What is a problem now?

• Ensure problem is in JS

• Reduce to pure JS (not DOM)

• Collect metrics

Demo

?

